Concept of Interactive Machine Learning in Urban Design Problems

  • Artem M. Chirkin ETH Zurich
  • Reinhard Koenig ETH Zurich

Abstract

This work presents a concept of interactive machine learning in a human design process. An urban design problem is viewed as  a multiple-criteria optimization problem. The outlined feature  of an urban design problem is the dependence of a design  goal on a context of the problem. We model the design goal  as a randomized fitness measure that depends on the context.  In terms of multiple-criteria decision analysis (MCDA), the  defined measure corresponds to a subjective expected utility  of a user.  In the first stage of the proposed approach we let the algorithm  explore a design space using clustering techniques. The second  stage is an interactive design loop; the user makes a proposal,  then the program optimizes it, gets the user’s feedback and  returns back the control over the application interface.

Downloads

Download data is not yet available.

References

Jonas Allegrini, Viktor Dorer, and Jan Carmeliet. 2015. Influence of morphologies on the microclimate in urban neighbourhoods. Journal of Wind Engineering and Industrial Aerodynamics 144 (sep 2015), 108–117. DOI: http://dx.doi.org/10.1016/j.jweia.2015.03.024

Michel Avital and Dov Te’Eni. 2009. From generative fit to generative capacity: Exploring an emerging dimension of information systems design and task performance. In Information Systems Journal, Vol. 19. 345–367. DOI: http://dx.doi.org/10.1111/j.1365-2575.2007.00291.x

Liu Baoding and Chen Xiaowei. 2013. Uncertain Multiobjective Programming and Uncertain Goal Programming. Journal of Uncertainty Analysis and Applications (2013), 1–10.

M Batty. 2001. Exploring Isovist Fields: Space and Shape in Architectural and Urban Morphology. Environment and Planning B Planning and Design 28, 1 (2001), 123–150.

Wolfgang Ertel. 2012. Reinforcement learning combined with human feedback in continuous state and action spaces. In 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL). IEEE, 1–6. DOI: http://dx.doi.org/10.1109/DevLrn.2012.6400849

Chris Fraley, Adrian E Raftery, Thomas Brendan Murphy, and Luca Scrucca. 2012. mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. (2012).

John Frazer. 2002. Creative Design and the Generative Evolutionary Paradigm. In Creative Evolutionary Systems. Elsevier, 253–274. DOI: http://dx.doi.org/10.1016/B978-155860673-9/50047-1

Klaus Hechenbichler and Klaus Schliep. 2004. Weighted k-Nearest-Neighbor Techniques and Ordinal Classification. Discussion Paper 399, SFB 386, Ludwig-Maximilians University Munich (2004).

Ralf Herbrich, Tom Minka, and Thore Graepel. 2007. TrueSkill: A Bayesian Skill Rating System. In NIPS. 569–576. DOI:http://dx.doi.org/10.2134/jeq2007.0177

Bill Hillier and Julienne Hanson. 1984. The Social Logic of Space. Cambridge University Press, Cambridge. DOI: http://dx.doi.org/10.1017/CBO9780511597237

Patrick Janssen. 2006. A generative evolutionary design method. Digital Creativity 17, 1 (2006), 49–63. DOI: http://dx.doi.org/10.1080/14626260600665736

W. Bradley Knox and Peter Stone. 2015. Framing reinforcement learning from human reward: Reward positivity, temporal discounting, episodicity, and performance. Artificial Intelligence 225 (aug 2015), 24–50. DOI: http://dx.doi.org/10.1016/j.artint.2015.03.009

Murat Köksalan, Jyrki Wallenius, and Stanley Zionts. 2013. An Early History of Multiple Criteria Decision Making. Journal of Multi-Criteria Decision Analysis 20, 1-2 (jan 2013), 87–94. DOI: http://dx.doi.org/10.1002/mcda.1481

Sivam Krish. 2011. A practical generative design method. Computer-Aided Design 43, 1 (jan 2011), 88–100. DOI: http://dx.doi.org/10.1016/j.cad.2010.09.009

Hang Li. 2011. Learning to Rank for Information Retrieval and Natural Language Processing. Synthesis Lectures on Human Language Technologies 4, 1 (apr 2011), 1–113. DOI: http://dx.doi.org/10.2200/S00348ED1V01Y201104HLT012

F Mallor, Pedro M Mateo Collazos, Isolina Alberto Moralejo, and Carmen Azcárate Giménez. 2003. Multiobjective evolutionary algorithms: Pareto rankings. In VII Jornadas Zaragoza-Pau de Matem{á}tica Aplicada y estad{í}stica: Jaca (Huesca), 17-18 de septiembre de 2001. Prensas Universitarias de Zaragoza, 27–36.

Nikhil Naik, Jade Philipoom, Ramesh Raskar, and Cesar Hidalgo. 2014. Streetscore - Predicting the Perceived Safety of One Million Streetscapes. In CVPR Workshop on Web-scale Vision and Social Media. IEEE, 7. DOI: http://dx.doi.org/10.1109/CVPRW.2014.121

Annibal Parracho Sant’Anna. 2015. Probabilistic Composition of Preferences, Theory and Applications. Springer International Publishing, Cham. DOI: http://dx.doi.org/10.1007/978-3-319-11277-0

John Peponis, Jean Wineman, Mahbub Rashid, S Hong Kim, and Sonit Bafna. 1997. On the description of shape and spatial configuration inside buildings: convex partitions and their local properties. Environment and Planning B 24 (1997), 761–782.

Philip Salesses, Katja Schechtner, and César A. Hidalgo. 2013. The collaborative image of the city: mapping the inequality of urban perception. PLoS ONE 8, 7 (jan 2013). DOI:http://dx.doi.org/10.1371/journal.pone.0068400

Saba Saneinejad, Peter Moonen, and Jan Carmeliet. 2014. Comparative assessment of various heat island mitigation measures. Building and Environment 73 (mar 2014), 162–170. DOI: http://dx.doi.org/10.1016/j.buildenv.2013.12.013

Ben Shneiderman. 2003. Leonardo’s Laptop: Human Needs and the New Computing Technologies. (2003). DOI:http://dx.doi.org/10.1108/02640470310470598

Vishal Singh and Ning Gu. 2012. Towards an integrated generative design framework. Design Studies 33, 2 (mar 2012), 185–207. DOI: http://dx.doi.org/10.1016/j.destud.2011.06.0017

Yannis Sismanis. 2010. How I won the "Chess Ratings - Elo vs the Rest of the World" Competition. (dec 2010). http://arxiv.org/abs/1012.4571

Alasdair Turner, Alan Penn, and Bill Hillier. 2005. An algorithmic definition of the axial map. Environment and Planning B: Planning and Design 32, 3 (2005), 425–444. DOI:http://dx.doi.org/10.1068/b31097

Ke Zhou, Gui-Rong Xue, Hongyuan Zha, and Yong Yu. 2008. Learning to rank with ties. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR ’08. ACM Press, New York, New York, USA, 275. DOI:http://dx.doi.org/10.1145/1390334.1390382

E. Zitzler and L. Thiele. 1999. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3, 4 (1999), 257–271. DOI:
Published
2017-07-04
How to Cite
CHIRKIN, Artem M.; KOENIG, Reinhard. Concept of Interactive Machine Learning in Urban Design Problems. International SERIES on Information Systems and Management in Creative eMedia (CreMedia), [S.l.], n. 2016/1, p. 1-8, july 2017. ISSN 2341-5576. Available at: <https://www.ambientmediaassociation.org/Journal/index.php/series/article/view/251>. Date accessed: 29 feb. 2024.
Share |